Impacto de la inteligencia artificial generativa en la empleabilidad y reconversión laboral: un análisis sectorial
Impact of generative artificial intelligence on employability and workforce retraining: a sectoral análisisContenido principal del artículo
La inteligencia artificial generativa (IAG) transforma aceleradamente el mercado laboral contemporáneo. El estudio se propuso como objetivo analizar el impacto de la IAG en la empleabilidad y reconversión laboral mediante un análisis sectorial comparativo. La metodología es de enfoque mixto concurrente, tipo descriptivo-analítico, diseño transversal comparativo. Contó con una población de 450 profesionales de cinco sectores (tecnología, educación, salud, finanzas y servicios creativos) de Argentina, Chile, Colombia, México y Perú. Se utilizó un Cuestionario de Exposición a IA Generativa (α=0.91), Escala de Empleabilidad Percibida (α=0.88) e Inventario de Competencias para la Era IA (α=0.89); entrevistas semiestructuradas y grupos focales. Los resultados indican que el 58.3% de puestos presenta obsolescencia de habilidades; la competencia en supervisión crítica de IA (β=0.42) y mentalidad de aprendizaje continuo (β=0.37) predicen empleabilidad (R²=0.67). En conclusión, la reconversión exitosa requiere competencias complementarias a la IA y ecosistemas institucionales de apoyo diferenciados por sector.
Generative artificial intelligence (GIA) is rapidly transforming the contemporary labor market. The study aims to analyze the impact of IAG on employment and labor reconversion through a comparative sectoral analysis. The methodology has a mixed concurrent approach, descriptive-analytical type, comparative transversal design. It counts on a population of 450 professionals from five sectors (technology, education, health, finance and creative services) from Argentina, Chile, Colombia, Mexico and Peru. A Generative AI Exposure Cuestionary (α=0.91), Perceived Employment Scale (α=0.88) and Skills Inventory were used for Era IA (α=0.89); semi-structured interviews and focus groups. The results indicate that 58.3% of people present skills obsolescence; competence in critical AI supervision (β=0.42) and continuous learning mindset (β=0.37) predict employment (R²=0.67). In conclusion, successful conversion requires complementary AI skills and institutional support ecosystems differentiated by sector.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Cómo citar
Referencias
Acemoglu, D., y Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, 33(2), 3-30. https://doi.org/10.1257/jep.33.2.3
Acemoglu, D., y Restrepo, P. (2023). Demographics and automation. The Review of Economic Studies, 89(1), 1-44. https://doi.org/10.1093/restud/rdac021
Autor, D. H. (2022). The labor market impacts of technological change: From unbridled enthusiasm to qualified optimism to vast uncertainty. Journal of Economic Perspectives, 36(2), 3-30. https://www.nber.org/system/files/working_papers/w30074/w30074.pdf
Autor, D. H., Mindell, D. A., & Reynolds, E. B. (2022). The work of the future: Building better jobs in an age of intelligent machines. MIT Press. https://mitpress.mit.edu/9780262547307/the-work-of-the-future/
Braun, V., y Clarke, V. (2022). Thematic analysis: A practical guide (2nd ed.). SAGE Publications. https://uk.sagepub.com/en-gb/eur/thematic-analysis/book248481
Brynjolfsson, E., Li, D., y Raymond, L. R. (2023). Generative AI at work. National Bureau of Economic Research Working Paper, w31161. https://doi.org/10.3386/w31161
Creswell, J., y Plano Clark, V. L. (2021). Designing and conducting mixed methods research (3rd ed.). SAGE Publications. https://us.sagepub.com/en-us/nam/designing-and-conducting-mixed-methods-research/book241842
Deming, D. J. (2021). The growing importance of social skills in the labor market. The Quarterly Journal of Economics, 132(4), 1593-1640. https://doi.org/10.1093/qje/qjx022
Eloundou, T., Manning, S., Mishkin, P., y Rock, D. (2023). GPTs are GPTs: An early look at the labor market impact potential of large language models. arXiv preprint arXiv:2303.10130. https://doi.org/10.48550/arXiv.2303.10130
Felten, E., Raj, M., y Seamans, R. (2023). Occupational heterogeneity in exposure to generative AI. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4414065
Ford, M. (2015). Rise of the robots: Technology and the threat of a jobless future. Basic Books. https://www.basicbooks.com/titles/martin-ford/rise-of-the-robots/9780465097531/
Hillage, J., y Pollard, E. (1998). Employability: Developing a framework for policy analysis. Department for Education and Employment, Research Report RR85. https://www.education.gov.uk/publications/eOrderingDownload/RB85.pdf
Huang, M. H., Rust, R., y Maksimovic, V. (2023). The feeling economy: Managing in the next generation of artificial intelligence. California Management Review, 61(4), 43-65. https://doi.org/10.1177/0008125619863436
International Labour Organization (ILO). (2023). Generative AI and jobs: A global analysis. https://www.ilo.org/global/publications/books/WCMS_890761
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586. https://doi.org/10.1016/j.bushor.2018.03.007
Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Kruber, S., Kuber, J., Liebing, K., Scheiffele, L., Shimizu, K., Steubing, C., Stumfoll, J., Tschirschwitz, D., Vulic, M., … y Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
Kolb, D. (2014). Experiential learning: Experience as the source of learning and development (2nd ed.). Pearson Education. https://www.pearson.com/en-us/subject-catalog/p/experiential-learning-experience-as-the-source-of-learning-and-development/P200000003216
Korinek, A., y Stiglitz, J. E. (2023). Artificial intelligence, globalization, and strategies for economic development. National Bureau of Economic Research Working Paper, w30857. https://doi.org/10.3386/w30857
LaPointe, K. (2022). Narrating career, positioning identity: Career identity as a narrative practice. Journal of Vocational Behavior, 72(2), 208-225. https://doi.org/10.1016/j.jvb.2007.11.010
Lave, J., y Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press. https://doi.org/10.1017/CBO9780511815355
Mikalef, P., y Gupta, M. (2022). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434
OECD. (2023). OECD Employment Outlook 2023: Artificial intelligence and the labour market. OECD Publishing. https://doi.org/10.1787/08785bba-en
OECD. (2023). Artificial intelligence and the future of work. https://www.oecd.org/employment/artificial-intelligence-and-the-future-of-work.htm
Rajpurkar, P., y Lungren, M. P. (2023). The current and future state of AI interpretation of medical images. New England Journal of Medicine, 388(21), 1981-1990. https://doi.org/10.1056/NEJMra2301725
Rothwell, A., Jewell, S., y Hardie, M. (2020). Self-perceived employability: Investigating the responses of post-graduate students. Journal of Vocational Behavior, 75(2), 152-161. https://doi.org/10.1016/j.jvb.2009.05.002
Van der Heijde, C., y Van der Heijden, B. I. (2020). A competence-based and multidimensional operationalization and measurement of employability. Human Resource Management, 45(3), 449-476. https://doi.org/10.1002/hrm.20119
World Economic Forum. (2023). Future of jobs report 2023. WEF. https://www.weforum.org/reports/the-future-of-jobs-report-2023