Minería de datos: Un enfoque perspectivo desde el contexto educativo

Data mining: A perspective approach from the educational context

Contenido principal del artículo

Autores/as

Este estudio está dirigido a conocer el proceso de integración de la minería de datos en los currículos desde la Perspectiva Educativa en Lima, Perú. Especialmente, aborda las metodologías aplicadas para optimizar intervenciones educativas, evaluando su efectividad, integración con procesos pedagógicos y abordaje de la brecha digital para elevar la eficacia y eficiencia en la enseñanza y el aprendizaje. La metodología aplicada fue cualitativa, no experimental, exploratoria y descriptiva para explicar el problema de estudio. El resultado propuesto, constituye aporte de investigaciones en el contexto del desarrollo de la minería de datos educacionales. Como principal conclusión, se destaca la necesidad de incorporar la minería de datos en el ámbito educacional, con el propósito de esclarecer el camino a los docentes, encargados de administrar los procesos de formación, en favor de la educación virtual o en línea para revalorizar la educación y favorecer el proceso educativo en favor del estudiante.

Detalles del artículo

Cómo citar
Minería de datos: Un enfoque perspectivo desde el contexto educativo. (2024). Revista Tribunal, 4(9), 138-160. https://doi.org/10.59659/revistatribunal.v4i9.70
Sección
Artículos de Investigación

Cómo citar

Minería de datos: Un enfoque perspectivo desde el contexto educativo. (2024). Revista Tribunal, 4(9), 138-160. https://doi.org/10.59659/revistatribunal.v4i9.70

Referencias

Al-Saggaf, Y., Rahman, M. A., & Wiil, U. K. (2024). Using data mining to discover new patterns of social media and smartphone use and emotional states. Social Network Analysis and Mining, 14(1). https://doi.org/10.1007/s13278-024-01243-8

Allana, A. A., Ali, S. K., & Ghias, K. (2024). Bioethics curriculum for undergraduate medical students: an evaluation study utilizing mixed methods approach. BMC Medical Education, 24(1), 1–14. https://doi.org/10.1186/s12909-024-05376-4

Arantes, J. (2023). Digital twins and the terminology of “personalization” or “personalized learning” in educational policy: A discussion paper. Policy Futures in Education, 22(4), 524–543. https://doi.org/10.1177/14782103231176357

Arias Ortiz, E., Giambruno, C., Morduchowicz, A., & Pineda, B. (2023). El Estado de la educación en América Latina y el Caribe. In Banco Interamericano de Desarrollo. https://publications.iadb.org/es/el-estado-de-la-educacion-en-america-latina-y-el-caribe-2023

Beręsewicz, M., Cherniaiev, H., Mantaj, A., & Pater, R. (2024). Text analysis of job offers for mismatch of educational characteristics to labour market demands. Quality and Quantity, 58(2), 1799–1825. https://doi.org/10.1007/s11135-023-01707-7

Bogdan, R. C., & Biklen, S. K. (2007). Qualitative Research for Education: An Introduction to Theories and Methods. In Pearson Education (5th ed.). https://www.amazon.com/Qualitative-Research-Education-Introduction-Theories/dp/0205482937

Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27–40. https://doi.org/10.3316/QRJ0902027

Boztaş, G. D., Berigel, M., & Altınay, F. (2024). A bibliometric analysis of Educational Data Mining studies in global perspective. Education and Information Technologies, 29(7), 8961–8985. https://doi.org/10.1007/s10639-023-12170-0

Brigitte, H., & Quiroz, Q. (2023). Data Mining Technique for Educational Processes in Students with Special Educational Needs Based on a Predictive Model. Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS, 5, 205–217.

Chamorro-Atalaya, O., Sobrino-Chunga, L., Guerrero-Carranza, R., Vargas-Díaz, A., & Poma-Garcia, C. (2024). Student satisfaction in the context of hybrid learning through sentiment analysis. International Journal of Evaluation and Research in Education , 13(2), 831–841. https://doi.org/10.11591/ijere.v13i2.26717

Chen, J. (2024). Construction of E-Learning English Wisdom Classroom Based on Educational Big Data Mining. Computer-Aided Design and Applications, 21(S22), 251–264. https://doi.org/10.14733/cadaps.2024.S22.251-264

Clarke, L., O’Neill, N., Patel, B., Steeman, S., Segal, G., Merrell, S. B., & Gisondi, M. A. (2024). Trainee advocacy for medical education on the care of people with intellectual and/or developmental disabilities: a sequential mixed methods analysis. BMC Medical Education, 24(1), 491. https://doi.org/10.1186/s12909-024-05449-4

Creswell, J. W. (2013). Steps in conducting a scholarly mixed methods study. https://digitalcommons.unl.edu/dberspeakers/48/

Colpo, M. P., Primo, T. T., & de Aguiar, M. S. (2024). Lessons learned from the student dropout patterns on COVID-19 pandemic: An analysis supported by machine learning. British Journal of Educational Technology, 55(2), 560–585. https://doi.org/10.1111/bjet.13380

Fang, C., Dziedzic, A., Zhang, L., Oliva, L., Verma, A., Razak, F., Papernot, N., & Wang, B. (2024). Decentralised, collaborative, and privacy-preserving machine learning for multi-hospital data. EBioMedicine, 101(February), 105006. https://doi.org/10.1016/j.ebiom.2024.105006

García-Herrero, J., Berlanga de Jesús, A., Molina López, J. M., Patricio Guisado, M. Á., Luis Bustamante, Á., & Padilla Arias, W. R. (2018). Ciencia de datos Técnicas analíticas y aprendizaje estadístico Un enfoque práctico. Altaria Publicaciones Alfaomega. https://www.academia.edu/43722825/Ciencia_de_datos_Técnicas_analíticas_y_aprendizaje_estadístico

García Sánchez, R., & Gil Mateos, J. E. (2023). Minería de Datos Educacionales: Descubrir tesoros ocultos durante el aprendizaje. Revista Científica Ecociencia, 10, 18–41. https://doi.org/10.21855/ecociencia.100.830

Guanin-Fajardo, J. H., Guaña-Moya, J., & Casillas, J. (2024). Predicting Academic Success of College Students Using Machine Learning Techniques. Machine Learning and Its Applications, 9(4), 1–27. https://doi.org/10.3390/data9040060

Gupta, V., Li, Y., Peltekian, A., Kilic, M. N. T., Liao, W. K., Choudhary, A., & Agrawal, A. (2024). Simultaneously improving accuracy and computational cost under parametric constraints in materials property prediction tasks. Journal of Cheminformatics, 16(1), 1–13. https://doi.org/10.1186/s13321-024-00811-6

Hernández, R., Fernández, C., & Baptista, M. del P. (2014). Metodología de la Investigación. Mc Graw Hill Education.

Ikram, C., Lamya, A., Mohamed, E., & Mohamed, K. (2024). Model for motivating learners with personalized learning objects in a hypermedia adaptive learning system. IAES International Journal of Artificial Intelligence (IJ-AI), 13(2), 1282. https://doi.org/10.11591/ijai.v13.i2.pp1282-1293

Jiang, L. (2024). Problem Analysis and Legal Protection of the Exercise of Teachers’ Educational Disciplinary Rights Based on the Background of Big Data. Applied Mathematics and Nonlinear Sciences, 9(1), 1–18. https://doi.org/10.2478/amns.2023.2.01350

Kerssens, N., & van-Dijck, J. (2023). Transgressing local, national, global spheres: the blackboxed dynamics of platformization and infrastructuralization of primary education. Information Communication and Society. https://doi.org/10.1080/1369118X.2023.2257293

Kooptiwoot, S., Kooptiwoot, S., & Javadi, B. (2024). Application of regression decision tree and machine learning algorithms to examine students’ online learning preferences during COVID-19 pandemic. International Journal of Education and Practice, 12(1), 82–94. https://doi.org/10.18488/61.v12i1.3619

Kubegenova, A., Abuova, Z., Gumarova, A., & Kamalova, G. (2024). Using the Data Mining Tool to Analyze Student Performance. 39–51. https://doi.org/10.1007/978-3-031-50609-3_4

Kumar, M., Singh, N., Wadhwa, J., Singh, P., Kumar, G., & Qtaishat, A. (2024). Utilizing Random Forest and XGBoost Data Mining Algorithms for Anticipating Students’ Academic Performance. International Journal of Modern Education and Computer Science, 16(2), 29–44. https://doi.org/10.5815/ijmecs.2024.02.03

Li, Z. (2024). Image analysis and teaching strategy optimization of folk dance training based on the deep neural network. Scientific Reports, 14(1), 1–12. https://doi.org/10.1038/s41598-024-61134-y

Long, P., & Siemens, G. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46(5), 30–40. https://er.educause.edu/-/media/files/article-downloads/erm1151.pdf

Menacho-Chiok, C. H. (2020). Técnicas de minería de datos aplicadas a la plataforma educativa Moodle. Revista Tierra Nuestra, 14(1), 137–146. https://revistas.lamolina.edu.pe/index.php/tnu/article/view/1509/2618

Monsalve-Pulido, J., Parra, C. A., & Aguilar, J. (2024). Multimodal model for the Spanish sentiment analysis in a tourism domain. Social Network Analysis and Mining, 14(1). https://doi.org/10.1007/s13278-024-01202-3

Okoye, K., Nganji, J. T., Escamilla, J., & Hosseini, S. (2024). Machine learning model (RG-DMML) and ensemble algorithm for prediction of students’ retention and graduation in education. Computers and Education: Artificial Intelligence, 6(January), 100205. https://doi.org/10.1016/j.caeai.2024.100205

Piaget, J. (1972). The principles of genetic epistemology. In Basic Books. https://www.amazon.com/principles-genetic-epistemology-Jean-Piaget/dp/0710072961

Raji, N. R., Kumar, R. M. S., & Biji, C. L. (2023). Closing the gap: exploring the untapped potential of machine learning in deaf students and hearing students’ academic performance. International Journal of Advanced Technology and Engineering Exploration, 10(108), 1449–1475. https://doi.org/10.19101/IJATEE.2023.10101685

Rohani, N., Gal, K., Gallagher, M., & Manataki, A. (2024). Providing insights into health data science education through artificial intelligence. BMC Medical Education, 24(1), 1–17. https://doi.org/10.1186/s12909-024-05555-3

Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27. https://doi.org/10.1002/widm.1075

Roski, M., Ewerth, R., Hoppe, A., & Nehring, A. (2024). Exploring Data Mining in Chemistry Education: Building a Web-Based Learning Platform for Learning Analytics. Journal of Chemical Education, 101(3), 930–940. https://doi.org/10.1021/acs.jchemed.3c00794

Salloum, S. A., Alhumaid, K., Alfaisal, A. M., Aljanada, R. A., & Alfaisal, R. (2024). Adoption of 3D Holograms in Science Education: Transforming Learning Environments. IEEE Access, 12(April), 70984–70998. https://doi.org/10.1109/ACCESS.2024.3402549

Santiago, C. S., Embang, S. I., Acanto, R. B., Ambojia, K. W. P., Aperocho, M. D. B., Balilo, B. B., Cahapin, E. L., Conlu, M. T. N., Lausa, S. M., Laput, E. Y., Malabag, B. A., Paderes, J. J., & Romasanta, J. K. N. (2023). Utilization of Writing Assistance Tools in Research in Selected Higher Learning Institutions in the Philippines: A Text Mining Analysis. International Journal of Learning, Teaching and Educational Research, 20(11), 259–284. https://doi.org/10.26803/ijlter.22.11.14

Sergent, T., Daniel, M., Bouchet, F., & Carron, T. (2024). How Can Self-Evaluation and Self-Efficacy Skills of Young Learners be Scaffolded in a Web Application? IEEE Transactions on Learning Technologies, 17, 1184–1197. https://doi.org/10.1109/TLT.2024.3360121