Inteligencia Artificial en la educación: revisión sistemática de su impacto, formación y consideraciones éticas
Artificial Intelligence in education: a systematic review of its impact, training, and ethical considerationsContenido principal del artículo
Las tecnologías de punta contribuyen a transformar la educación, mejoran el aprendizaje personalizado y preparan a estudiantes y docentes para futuros retos digitales y globales. El objetivo del presente artículo de revisión sistemática fue describir el estado de las investigaciones sobre la Inteligencia Artificial en la educación. La metodología utilizada fue una revisión sistemática cualitativa, se seleccionaron 12 artículos comprendidos entre 2022 y 2024, usando el modelo PRISMA. Los resultados evidencian que la Inteligencia Artificial contribuye a personalizar el aprendizaje, optimizar tareas y mejorar el rendimiento académico, pero su implementación debe considerar posibles impactos negativos y desafíos éticos. Los estudiantes y docentes muestran interés en formarse, aunque muestran conocimientos limitados. Se concluye que es vital fortalecer la capacitación, desarrollando estrategias integrales que aporten a la formación de competencias digitales y el pensamiento crítico, con metodologías innovadoras y evaluaciones adaptadas, guiadas por principios deontológicos que promuevan equidad.
Cutting-edge technologies contribute to transforming education, improving personalized learning, and preparing students and teachers for future digital and global challenges. The objective of this systematic review article was to describe the state of research on Artificial Intelligence in education. The methodology used was a qualitative systematic review, selecting 12 articles from 2022 to 2024 using the PRISMA model. The results show that Artificial Intelligence contributes to personalizing learning, optimizing tasks, and improving academic performance, but its implementation must consider potential negative impacts and ethical challenges. Students and teachers show interest in training, although they have limited knowledge. It is concluded that it is vital to strengthen training by developing comprehensive strategies that contribute to the development of digital skills and critical thinking, with innovative methodologies and adapted assessments, guided by ethical principles that promote equity.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Cómo citar
Referencias
Al-Tkhayneh, K. M., Alghazo, E. M. y Tahat, D. (2023). The advantages and disadvantages of using artificial intelligence in education. 13(4), 105-117. https://doi.org/10.36941/jesr-2023-0094
Almaraz, C., Almaraz, F. y López, C. (2023). Comparative study of the attitudes and perceptions of university students in business administration and management and in education toward artificial intelligence. Education Sciences, 13(6), 609. https://doi.org/10.3390/educsci13060609
Ansor, F., Zulkifli, N. A., Jannah, D. S. M. y Krisnaresanti, A. (2023). Adaptive learning based on artificial intelligence to overcome student academic inequalities. Journal of Social Science Utilizing Technology, 1(4), 202-213. https://doi.org/10.70177/jssut.v1i4.663
Bucea-Manea-Țoniş, R., Kuleto, V., Gudei, S. C. D., Lianu, C., Lianu, C., Ilić, M. P. y Păun, D. (2022). Artificial intelligence potential in higher education institutions enhanced learning environment in Romania and Serbia. Sustainability, 14(10), 5842. https://doi.org/10.3390/su14105842
Dalalah, D. y Dalalah, O. M. (2023). The false positives and false negatives of generative AI detection tools in education and academic research: The case of ChatGPT. The International Journal of Management Education, 21(2), 100822. https://doi.org/10.1016/j.ijme.2023.100822
Darwin, Rusdin, D., Mukminatien, N., Suryati, N., Laksmi, E. D. y Marzuki. (2024). Critical thinking in the AI era: An exploration of EFL students’ perceptions, benefits, and limitations. Cogent Education, 11(1), 2290342. https://doi.org/10.1080/2331186X.2023.2290342
Díaz, N., Del Ser, J., Coeckelbergh, M., López, M., Herrera, E. y Herrera, F. (2023). Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Information Fusion, 99, 101896. https://doi.org/10.1016/j.inffus.2023.101896
Ding, A.-C. E. y Yu, C.-H. (2024). Serious game-based learning and learning by making games: Types of game-based pedagogies and student gaming hours impact students' science learning outcomes. Computers & Education, 218, 105075. https://doi.org/10.1016/j.compedu.2024.105075
Khogali, H. O. y Mekid, S. (2023). The blended future of automation and AI: Examining some long-term societal and ethical impact features. Technology in Society, 73, 102232. https://doi.org/10.1016/j.techsoc.2023.102232
Khosravi, H., Shum, S. B., Chen, G., Conati, C., Tsai, Y.-S., Kay, J., . . . Gašević, D. (2022). Explainable artificial intelligence in education. Computers Education: Artificial Intelligence, 3, 100074. https://doi.org/10.1016/j.caeai.2022.100074
Koens, K., Klijs, J., Weber-Sabil, J., Melissen, F., Lalicic, L., Mayer, I., . . . Aall, C. (2022). Serious gaming to stimulate participatory urban tourism planning. Journal of Sustainable Tourism, 30(9), 2167-2186. https://doi.org/10.1080/09669582.2020.1819301
Lameras, P. y Arnab, S. (2021). Power to the teachers: an exploratory review on artificial intelligence in education. Information Fusion, 13(1), 14. https://doi.org/10.3390/info13010014
Layode, O., Ndidi, H. N., Sheriff, G., Onyekachukwu, E. y Temitope, T. (2024). Data privacy and security challenges in environmental research: Approaches to safeguarding sensitive information. International Journal of Applied Research in Social Sciences, 6(6), 1193-1214. https://doi.org/10.51594/ijarss.v6i6.1210
Leitner, M., Greenwald, E., Wang, N., Montgomery, R. y Merchant, C. (2023). Designing game-based learning for high school artificial intelligence education. International Journal of Artificial Intelligence in Education, 33(2), 384-398. https://doi.org/10.1007/s40593-022-00327-w
Lodge, J. M., Thompson, K. y Corrin, L. (2023). Mapping out a research agenda for generative artificial intelligence in tertiary education. Australasian Journal of Educational Technology, 39(1), 1-8. https://doi.org/10.14742/ajet.8695
Ly, R. y Ly, B. (2025). Ethical challenges and opportunities in ChatGPT integration for education: insights from emerging economy. AI Ethics, 1-18. https://doi.org/10.1007/s43681-025-00667-y
Malcata, E. (2025). Artificial Intelligence in Higher Education: Proposal for a Transversal Curricular Unit. ournal of Formative Design in Learning, 1-24. https://doi.org/10.1007/s41686-024-00097-9
Martín, B. (2022). TIC e inteligencia artificial en la revisión del proceso de escritura: su uso en las universidades públicas valencianas. Research in education learning innovation archives(28), 16-31. https://doi.org/10.7203/realia.28.20622
Nguyen, A., Ngo, H. N., Hong, Y., Dang, B. y Nguyen, B.-P. T. (2023). Ethical principles for artificial intelligence in education. Education information technologies, 28(4), 4221-4241. https://doi.org/10.1007/s10639-022-11316-w
Nikolic, S., Daniel, S., Haque, R., Belkina, M., Hassan, G. M., Grundy, S., . . . Sandison, C. (2023). ChatGPT versus engineering education assessment: a multidisciplinary and multi-institutional benchmarking and analysis of this generative artificial intelligence tool to investigate assessment integrity. European Journal of Engineering Education, 48(4), 559-614. https://doi.org/10.1080/03043797.2023.2213169
Ouyang, F., Wu, M., Zheng, L., Zhang, L. y Jiao, P. (2023). Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course. International Journal of Educational Technology in Higher Education, 20(1), 4. https://doi.org/10.1186/s41239-022-00372-4
Park, W. y Kwon, H. (2024). Implementing artificial intelligence education for middle school technology education in Republic of Korea. International journal of technology design education, 34(1), 109-135. https://doi.org/10.1007/s10798-023-09812-2
Phothong, W., Chaimongkol, J. y Ladachart, L. (2023). Changes in Students’ Design-Thinking Mindsets after Design-Based Learning with Respect to Gender and Prior Experiences in Design. Journal of Technology Education, 34(2). http://dx.doi.org/10.21061/jte.v34i2.a.5
Rodrigues, M., Silva, R., Borges, A. P., Franco, M. y Oliveira, C. (2025). Artificial intelligence: Threat or asset to academic integrity? A bibliometric analysis. Kybernetes, 54(5), 2939-2970. https://doi.org/10.1108/K-09-2023-1666
Sanusi, I. T., Olaleye, S. A., Agbo, F. J. y Chiu, T. K. (2022). The role of learners’ competencies in artificial intelligence education. Computers Education: Artificial Intelligence, 3, 100098. https://doi.org/10.1016/j.caeai.2022.100098
Sarı, T., Nayir, F. y Bozkurt, A. (2024). Reimagining education: Bridging artificial intelligence, transhumanism, and critical pedagogy. Journal of Educational Technology Online Learning, 7(1), 102-115. https://doi.org/10.31681/jetol.1308022
Seo, K., Tang, J., Roll, I., Fels, S. y Yoon, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International Journal of Educational Technology in Higher Education, 18, 1-23. https://doi.org/10.1186/s41239-021-00292-9
Sun, L. y Zhou, L. (2024). Does generative artificial intelligence improve the academic achievement of college students? A meta-analysis. Journal of Educational Computing Research, 62(7), 1896-1933. https://doi.org/10.1177/07356331241277937
Whalley, B., France, D., Park, J., Mauchline, A. y Welsh, K. (2021). Towards flexible personalized learning and the future educational system in the fourth industrial revolution in the wake of Covid-19. Higher Education Pedagogies, 6(1), 79-99. https://doi.org/10.1080/23752696.2021.1883458